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ABSTRACT 

In this paper, bearing capacity of footing resting is evaluated by using upper bound 

analysis. The soil is modelled by a perfectly-plastic Mohr-Coulomb model. Node-

based smoothed finite element method (NS-FEM) is used to approximate the 

kinematically admissible velocity fields. Then optimisation problem is formulated as 

a problem of minimising a sum of Euclidean norms so that it can be solved using an 

efficient second order cone programming (SOCP) algorithm in order to determine 

collapse load and failure mechanism as well. 

 

Key Words: Upper bound limit analysis, Bearing capacity, NS-FEM, SOCP 

INTRODUCTION 

Limit analysis has been using as a powerful tool to determine many kinds of 

geotechnical problems such as the ultimate load, failure mechanism of structures  as 

well as the stability of slopes. The upper bound theorem of limit analysis states that 

the power dissipated by any kinematically admissible velocity field can be equated 

to the power dissipated by the external loads in order to give a rigorous upper bound 

on the actual limit load. More information of limit theorems formulation of 

mechanical problems can be found in various resources (Le, Gilbert & Askes, 2009; 

Le, Nguyen-Xuan & Nguyen-Dang, 2010; Le, Askes, Gilbert, 2010).  

In general, two main elements of any limit analysis procedure are discretisation 

method and optimisation algorithm. At first, kinematically admissible velocity 

fields, which satisfy compatibility, the flow rule and velocity boundary conditions, 
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can be approximated using various computational methods. In this paper, these 

kinematic fields will be approximated by node-based smoothed finite elements 

method (NS-FEM). After that, a suitable optimisation problem is formulated in 

order to apply mathematical programming techniques. Once the displacement or 

stress fields are approximated and the bound theorems of plasticity are applied, 

limit analysis becomes a problem of optimisation involving either linear or 

nonlinear programming. This can be solved using linear or non-linear programming 

techniques which are integrated in commercial or in-house optimisation packages. 

In this paper, the underlying optimisation problem will be modelled in the form of a 

standard second-order cone programming so that it can be solved efficiently using 

available primal-dual interior point algorithms. In this research, we use a software 

called Mosek (Mosek, 2011) in order to conduct the optimization procedure. 

BRIEF OF THE NS-FEM 

The NS-FEM is one of several models of the smoothed finite element methods ( 

Smoothed-FEM).Each model effectively deal with a specific problem in mechanics. 

More details of this model as well as smoothed-FEM can be found in Liu’s Book 

(Liu & Nguyen Thoi Trung, 2010). 

In NS-FEM, based on the mesh of elements, we further discretise the problem 

domain into smoothing domains based on each node of the mesh by connecting 

portions of surrounding elements sharing the node. 

In detail, for node-based smooth FEM the smoothing domain is created by 

connecting sequentially the mid-edge point to the central points of the surrounding 

elements sharing node. The problem domain Ω is discretised using Ne elements 

with Nn nodes, such that 
Ne

e
i

i 1

   and e e
i j

i j,   . 

 
 

Figure 1: Illustration of node-based discretisation 
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For T3 or T4 elements which are popularly used, the shape function for NS-FEM is 

the same as FEM. However, the compatible strain field is replaced with the 

smoothed strain field over the smoothing domains: 

 
 

1 1 1

( ) ( ) ( )
I I

I I I

n nN NnN

x x x
  

      %%
d d I I d I I

L u L N d L N d B d

 

(1) 

Where 

 

( )x%
I d I

B L N
 

(2) 

For general polygonal elements, using the linear PIM technique to determine the 

smoothed shape functions .The linear system equation of NS-FEM has the form:  


NS -FEMK d f

 
(3) 

In which, NS -FEMK is the smoothed stiffness matrix whose entries are given by: 

1 1

NS FEM s

k

N Nn n

k ks
k

IJ
c d c d c A

 

      T T

I J I J

T

I J

Ω
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(4) 

Note that 
J

B is constant in Ω
s
k and A

s
k is the area of node-based domain and  

I
B is 

computed using equation: 

Γ

Ix

Iy
s

s
k k

Iy Ix

b 0

1
(x) (x)dΓ 0 b

A
b b

 
 

  
  

I n I
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(5) 

With 

1
( ) (x) , , .

Ih h
s

k
s
k

b n x d h x y
A 

   I
N

 

(6) 

It is worth noting that the NS-FEM is different from the standard FEM by two key 

points: (1) FEM uses the compatible strain on the element, while NS-FEM uses the 

smoothed strain on the smoothing domain; and (2) the assembly process of FEM is 

based on elements, while that of NS-FEM is based on smoothing domain 
k


 

Application of standard FEM can be found in paper of Sloan (Sloan & Kleeman, 

1995). However, assumptions used in standard FEM formulation are not always 

relevant for different kind of problems. 

UPPER BOUND LIMIT ANALYSIS FORMULATION 

Consider a rigid-perfectly plastic body of area 
2  with boundary  , which is 

subjected to body forces f  and to surface tractions g  on the free portion t  of  . 
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The constrained boundary u  is fixed and  =tu , =tu  . Let u be 

plastic velocity or flow fields that belong to a space   of kinematically admissible 

velocity fields. The strain rates   can be expressed by relations  

= =

xx

yy

xy








 
 
 
 
 
 

ε u

&

&
&

&
 (7) 

With is the differential operator: 

0

0
=

x

y

y x









 

 

 
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 
 
 
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(8)

 
The external work rate associated with a virtual plastic flow  in the linear form as:  

( ) = d d
T T

ext

t

W
 

  & & &u f u g u
    

(9) 

The internal plastic dissipation of the two-dimensional domain  can be written as: 

( ) = ( )d
int

W D 



 

(10) 

Where the plastic dissipation D( )& is defined by: 

( ) 0

( ) = : :maxD


 

   


ε
 

(11) 

with   represents the admissible stresses contained within the convex yield 

surface ( )   and 


  represents the stresses on the yield surface associated to any 

strain rates   through the plasticity condition. 

The kinematic theorem of plasticity states that the structure will collapse if and only 

if there exists a kinematically admissible displacement field u , such that: 

0
( ) < ( ) ( )

int ext ext
W W W


 ε u u& &

 
(12) 

If defining 1}=)(|{= uu 
extW  , the collapse load multiplier 


 can be 

determined by the following mathematical programming   

0

ext
u C

min D( )d W ( )






    ε u
&

& &                                                      (13)
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NS-FEM FORMULATION FOR PLANE STRAIN WITH 

MORH - COULOMB YIELD CRITERION: 

In this study, the Mohr-Coulomb criterion is used: 

2
( ) = ( ) 4 ( ) sin 2 cos

xx yy xy xx yy
c                               (14)

 

The plastic strains are assumed to obey the normality rule: 

=


 





&

 

(15) 

Where the plastic multiplier &is non – negative. Therefore, the power of 

dissipation can be formulated as a function of strain rates for each domain: 

( ) = cos
i i

D cAt ε&  (16) 

Where  
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Introducing an approximation of the displacement and using the smoothed strains, 

the upper bound limit analysis problem for plane strain can be formulated as: 

=1

= min cos
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(21)

  

Where Nnode is the number of node of the whole investigated domain. 

NUMERICAL EXAMPLE 

Bearing capacity factor Nc 

In this section, the performance of the new upper bound formulation is assessed by 

applying it to predict the collapse load for a plane strain strip footing. The exact 

collapse load for a strip footing on a weightless soil Nc was given in by Prandtl 

(Prandlt, 1920), thereby enabling objective validation. 

Undrained loading of a rigid strip footing 
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The exact collapse pressure
ult

q for a smooth rigid strip footing on a purely cohesive 

soil may be expressed as cult
cNq  ,where c is the un-drained shear strength and 

the bearing capacity factor cN 2  .Besides, due to symmetry only half of the 

foundation is considered. The rectangular region of L 5B and H 2B was 

considered sufficiently large to ensure that rigid elements show up along the entire 

boundary. The influence of the rigid footing is represented by a uniform vertical 

load and appropriate boundary conditions were applied as shown in Figure 2. 

 
 

Figure 2: Finite element mesh and displacement boundary conditions 
 

Table 1 lists results of cN calculated by various meshes by NS-FEM. It can be 

clearly seen that with mesh of only 540 elements, the NS-FEM analysis provide us 

the result 5.3332, which is 3.72% error compared to the exact solution. Besides, the 

convergence rate to the exact solution is also very good. Running the analysis with 

finer meshes produces results rapidly approaching the exact solution. For example, 

mesh of 4860 elements provide approximation of cN by 5.2036, only 1.2 % error 

compared to exact cN  

Table 1: Comparing error of the Nc approximation by NS-FEM in 

undrained condition 

 

Number of 

Elements 

540 960 1500 2160 2940 3840 4860 

Nc 5.3332 5.2828 5.2544 5.2354 5.2216 5.2114 5.2036 

Error(%) 3.73 2.75 2.19 1.82 1.56 1.36 1.21 

 

Drained loading of a rigid strip footing 

The Prandtl collapse pressure for a surface footing on a weightless cohesive-

frictional soil is cult
q c' N  where  c

'
N [exp( tan ')tan 2( /4+ ) 1] cot '

2


     , 
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c′ and φ′ are the effective cohesion and friction angle, respectively. The model 

solved is shown in Figure 3. 

 
 

Figure 3: Finite element mesh and displacement boundary conditions 
 

Several cases for internal friction angle  φ′ of this numerical problems are carried 

out in order to compare results with Prandtl’s as well as Terzaghi’s values (as 

shown in Figure 4 and Table 2). 

Table 2: Comparing bearing capacity NC in drained condition 

 

Internal friction 

angle  0
φ ( )  

Bearing capacity factor cN  

NS-FEM Terzaghi Prandt [6] 

5 6.5942 7.34 6.48882 

10 8.4626 9.60 8.34493 

15 11.1044 12.86 10.9765 

20 14.9756 17.69 14.8347 

25 20.8711 25.13 20.7205 

30 30.4406 37.16 30.1396 

35 46.5213 57.75 46.1236 

40 76.7604 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95.69 75.3131 

45 148.8791 172.29 133.874 

 

As we can see in the graph above, NSFEM always provide better results for bearing 

capacity factor cN than the results calculated by Terzaghi’s procedure. It is obvious 

that errors in Terzaghi’s results are higher than 10% for many cases of internal 

friction angle φ′  and the gap between exact values calculated by Prandt and this 

procedure is expanding gradually when φ′  is increasing. On the other hand, 

the cN values approximated by NSFEM are lower ( better-close to the Prandt’s 

values) than Terzaghi’s. Especially for  φ′  smaller than 40 degrees, NSFEM 

produce very good bearing capacity factor cN which is only 1%-2% difference from 

the exact values. 
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Figure 4: Bearing capacity Factor Nc 

 

The patterns of plastic energy dissipation and velocity field are also shown in 

Figure 5. 

 

 
Figure 5.1 Patterns of plastic energy dissipation and velocity field 

0
20   

 
Figure 5.2 Patterns of plastic energy dissipation and velocity field 

0
30   

 
Figure 5.3 Patterns of plastic energy dissipation and velocity field 

0
40 
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Bearing capacity factor Nγ 

In this paper, we also carried out numerical solutions for the determination of 

bearing capacity factor N . The problem is checked with two conditions: for 

smooth and rough footing. 

Bearing capacity factor Nγ for smooth footing behaviour  

The illustration of this problem is shown in Figure 6. Using mesh of 16404 

elements formulated by NS-FEM procedure, we also compare N values with 

solutions given by other authors (Meyerhof & Hanna, 1978; Michalowski, 1995; 

Davis & Booker, 1973). 

 
Figure 6: Meshing and boundary conditions for smooth footing 

 

Results of this problem are solved for several cases of internal friction angle 
0

5 40    and presented in Table 3 and Figure 7. 

Table 3: Comparing bearing capacity γN in drained condition 

 0
φ ( )

 

Bearing capacity factor γN  

 NS-FEM M. Hjiaj Meyerhof Botton Michalowski 

5 0.0905 0.092 0.035 0.09 0.127 

10 0.2940 0.298 0.183 0.29 0.423 

15 0.7212 0.720 0.565 0.71 1.050 

20 1.6129 1.602 1.435 1.6 2.332 

25 3.5072 3.490 3.383 3.51 5.02 

30 7.6938 7.696 7.834 7.74 10.918 

35 17.5410 17.668 18.5776 17.8 24.749 

40 42.8626 43.707 46.845 44 60.215 
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Internal friction angle φ 

 
 

 

Figure 7: Bearing capacity N for smooth footing behaviour 

Bearing capacity factor Nγ for rough footing behaviour  

The illustration of this problem is shown in Figure 8. Using mesh of 16404 

elements formulated by NS-FEM procedure, we also compare N values with 

solutions given by other authors (Meyerhof & Hanna, 1978; Michalowski, 1995; 

Davis & Booker, 1973). 

Results of this problem are solved for several cases of internal friction angle 
0

5 40    and presented in Table 4 and Figure 9. 

 

 
 

Figure 8: Meshing and boundary conditions for rough footing 
 

 

 

N
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Internal friction angle φ 

 

Table 4: Bearing capacity factor Nγ 

 

 0
φ ( )

 

Bearing capacity factor γN  

    NS-

FEM 

M. 

Hjiaj 

Meyer

hof 

 

Hansen Vesic 
 

Booker Kumar 
Micha

lowski 

5 0.1345 0.122 0.070 0.075 0.14

9 
0.244 0.230 0.181 

10 0.4712 0.455 0.367 0.389 1.22

4 

0.563 0.690 0.706 

15 1.2281 1.210 1.129 1.182 2.64

8 
1.301 1.600 1.938 

20 2.8784 2.857 2.871 2.948 5.38

6 
3.007 3.430 4.468 

25 6.4116 6.463 6.766 6.758 10.8

76 
6.950 7.180 9.765 

30 14.337

0 
14.621 15.667 15.070 22.4

02 
16.064 15.57 21.39

4 35 33.470

6 
34.163 37.152 33.921 48.0

29 
37.126 35.16 48.68

1 40 86.746

7 
85.110 93.691 79.541 109.

411 
85.805 85.73 118.8

27  

 

 
 

 

Figure 9: Meshing and boundary conditions for rough footing. 

CONCLUSION  

An innovative procedure for upper bound limit analysis based on node-based 

smoothed finite element method and second order cone programming has been 

described.  

SOCP is a powerful technique for non-linear optimisation that allows us to obtain 

accurate solutions for many difficult geotechnical problems. This is mainly because 

of the advantage of this method using NS-FEM which are numerical problems 

constructed without any mapping technique for all types of elements. Using this 

advantage, we will overcome the deterioration in the accuracy of the solution of 

N
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many geotechnical problems where element mesh is heavily distorted. Besides, the 

application of NS-FEM for upper bound limit analysis promises savings in 

computer resources, and large scale problems can be solve accurately with reduced 

amount of time. Dealing with these types of problems is part of our on-going 

project. 
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